CONVERGENCE OF FOURIER SERIES

MICHAEL LACEY AND CHRISTOPH THIELE

ABSTRACT. We give a proof of Carleson’s theorem on almost everywhere con-
vergence of Fourier series.

1. INTRODUCTION

We define the Carleson operator C acting on a Schwartz function f on R by
N
ci@ =sw [ feeme s 1)

where the Fourier transform fis defined by

7 = [ f@emieda

We give a simplified proof of the well known theorem [1],[2]:
Theorem 1.1. The Carleson operator C is of weak type (2,2), i.e.,

ICfll 2.0 < ClIfl2

with a constant C not depending on f.

This theorem is the key ingredient in the proof of Carleson’s celebrated theorem,
which asserts that the Fourier series of a function in L?([0,1]) converges pointwise
almost everywhere.

We became interested in Carleson’s theorem while studying the bilinear Hilbert
transform [3], [4], [5], [6]. As it turns out, these two subjects are closely related. The
purpose of the current article is to exhibit these connections by giving a proof of
Carleson’s theorem in the spirit of [3], [4], [5], [6]- In particular, the key Proposition
3.2 below is essentially taken from these papers.

While L. Carleson [1] uses a decomposition of the function f and C. Fefferman
[2] features a decomposition of the Carleson operator guided by N (the function
which picks the worst N for each z in the Carleson operator), we emphasize a
symmetry between f and N, as expressed by the duality of Propositions 3.1 and
3.2. This symmetry is more perfect in the case of the bilinear Hilbert transform,
where instead of f and N one has three Schwartz functions f;, f», and f3, and a
variant of Proposition 3.2 is applied to all three of them.

In Section 2 we introduce most of the notation used in this paper, and we do
a discretization of the Carleson operator. In Section 3 we prove boundedness of
the discretized Carleson operator by taking for granted Propositions 3.1 and 3.2
and some technical inequality (6) from standard singular integral theory. These
remaining items are proved in Sections 4, 5, and 6.
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2. NOTATION AND PRELIMINARY REDUCTIONS

Define translation, modulation, and dilation operators by
My f(z) = f(z)e*™™
ZLoa
Dif(z) =A"#f(A" )
We write |E| for the measure of a set E C R". Unless otherwise specified, an
interval I will be of the form [z, y) with z < y. Let ¢(I) denote the center of I, and

al for a > 0 the interval with the same center and «a times the length of I. Let 1
be the characteristic function of I and define the weight functions

w(z) =(1+2)"", wi(z):=TnDiyw ,
where the letter v as in the rest of the paper is used for a large integer whose exact
value is not important and may be different at different places of the argument.
Let ¢ be a Schwartz function such that ¢ is real, nonnegative, supported in

[-0.1,0.1], and equal to 1 on [—0.09,0.09]. For each rectangle P = Ip x wp of area
1 in the (phase-) plane define

$1p = Mg, ) Te(10) Dl 1@
where we have written wyp for the lower half wp N (-0, c(wp)) of wp. Similarly
we write wap for the upper half wp \ wip. Observe that 51 p is supported in %wl P
and we have )
|¢1p(2)| < ClIp[*wp(z)

where wp := wy, and C denotes as in the rest of the paper a large number whose
value depends only on the choice of ¢ and v and may be different at different places
of the argument.

Let G denote the set of all dyadic intervals, i.e., intervals [n2*, (n + 1)2*) with
integers n and k. Let P denote those rectangles in G' x G of area one. Define

Anf = Z (fa ¢1P) ¢1P1wzp(n) >
PcP
Af = lim ——

Jim X;M_,,T_ypg_nAQ_N,,DSN:@J\L7 fdydnds

K, x[0,1] PEP

where K, is any increasing sequence of rectangles I,, X wy, filling out R%. To see the
pointwise convergence of the last expression, consider separately those rectangles
P € P with |Ip| fixed, then the integrand becomes periodic in y and 7 for fixed &,
and observe that for very large and very small values of |Ip| the integrand becomes
small. It is easy to verify that A extends to a bounded operator on L?, is nonzero
and positive semidefinite, commutes with T}, for all y and with D? for all A > 0,
and satisfies Af = 0 if f has only positive frequencies. This identifies A as

0 ~ .
Af() = o /_ Fe)ei=e ag

for some constant ¢ # 0. Hence the Carleson operator is equal to Cf(z) =
¢t supy (MNyAM_y f)(z). We will prove that

llsupy Anfllp2.e <Cllfll2 - 2)
By averaging this proves the desired bound for the Carleson operator.
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By duality and the triangle inequality estimate (2) follows from
1
Zpep [{fs ¢1P) (¢1P(Lwsp © N), 15)| < C||f[|2|E|> ®3)

for all Schwartz functions f, measurable functions N, measurable sets E, and finite
subsets P of P. Since this estimate is homogeneous in f and invariant under
appropriate simultaneous dilations of f, N and F , it suffices to prove the estimate
for ||f|l2 =1 and |E| < 1. Whenever a set E is specified, we write

Ep:=En{z:N(z) ewp}, Ep:=EN{x:N(z)€ wp}

3. THE MAIN ARGUMENT

A rectangle P = Ip x wp of P will be called a tile. Each tile has area 1 and is
the union of two semitiles Py = Ip X wip and P» = Ip X wop. Observe that dyadic
intervals such as Ip, wp, w),p have the property that any two of them are either
disjoint or one is contained in the other. Moreover, if w;p is strictly contained
in a dyadic interval, then wyp is strictly contained in the same interval and vice
versa. We will use these geometric properties without referring to them. We define
a partial ordering on the set of tiles by P < P’ if Ip C Ip and wpr C wp.

A set T of tiles is called a tree, if there is a tile Pr = It X wr, the top of the
tree, such that P < Pr for all P € T. Observe that the top is not necessarily an
element of the tree. A tree is called j-tree if w;p, C w;p for all P € T.

For a finite subset P C P, define

mass(P) := sup sup / wp (z)dz
PeP prcP:p<pP' JEps

energy(P) :=supr (IIr[' Y [(foe))”

where the sup is taken over all 2-trees T' C P.

PET

Proposition 3.1. Let E C R be a set of measure smaller or equal 1. Let P be a
finite set of tiles. Then P is the union of P1 and Py with

mass(Py) < fmass(P),
and Py is the union of trees T € T such that
-1

ZTGT |I7| < Cmass(P) . (4)
Proposition 3.2. Let ||f|l2 =1 and P be a finite set of tiles. Then P is the union
of Py and Py with

energy(P1) < fenergy(P),

and Py is the union of trees T € T such that

> pe Hz| < Cenergy(P)=2 . (5)

We postpone the proofs of these propositions to Sections 4 and 5 and show
how the propositions imply (3). Observe that any collection P of tiles satisfies
mass(P) < C. We inductively apply Proposition 3.1 and 3.2 to P, as needed, to
achieve a decomposition of P into sets P,, with

mass(P,,) < min(C, 2°"), energy(P,) < 2"
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and P, is a union of trees T' € T,, with

—2n
2rer, M < €2

In Section 6 we will prove for each tree T' the inequality

S o 15 61P) (91,9, L) < Cenergy(Tmass(T) x| (©)

Hence for the collection T, we will have the estimate

ZTGT" ZPET |<f7 ¢1,P) <¢1,P7 ]-E2P>| S len(2n, 2—71,)

This is summable in n and so completes the proof.

4. PROOF OF PROPOSITION 3.1

Let u = mass(P). Let Pt be the set of tiles P € P with mass({P}) > su. To
each such tile P we may associate a tile P'(P) with P < P'(P) and

/ Wpr(P) dx > %/J

EP'(P)

Then, let P’ be those elements in {P'(P) | P € Pt} which are maximal with
respect to the partial order < on tiles. It suffices to show that

-1
Zplepl |IPI| <C'U/ ’

because the tiles P € PT can be collected into trees with tops in P’.
For k € N define P, to be the set of all P € P’ with

|EP n 2KIP| > CQZH/L|IP|

for some constant c. If ¢ is small enough, then one can conclude from the mass
estimate that each element P of P’ is contained in one of the sets P,. Hence it
suffices to show for every &

-k, —1
ZPePN lIp| < C27"%p

Fix k. For each P € P, we have an enlarged rectangle (2%Ip) x wp. We select
successively elements P € P, with maximal |Ip| whose enlarged rectangles are
disjoint from the enlarged rectangles of all previously selected elements. When no
further element can be selected, then each rectangle P’ € P, can be associated to
a selected rectangle P such that |Ip/| < |Ip| and the enlarged rectangles of P and
P' intersect. Let P! be the set of selected elements. Since the rectangles in P,
are pairwise disjoint, we see that the intervals Ip: of the rectangles P’ associated
to a fixed P € P! are pairwise disjoint and contained in 2°+2Ip. Hence

K
D pep MPISC2 Y 1P|

—k,,—1 K
<C2 % ZPEPS:] |Ep N 2°1p|

This is bounded by C27*u~! because the enlarged rectangles of the elements P €
Piel are pairwise disjoint and therefore the sets Ep N 2%Ip, which are contained in
E, are pairwise disjoint. This finishes the proof of Proposition 3.1.
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5. PROOF OF PROPOSITION 3.2

Let £ = energy(P). For a 2-tree T, let
ATz =171 (fodp) [

The important part is the construction of the collection Ps, which is determined
by the collection of trees T.

Pick a 2-tree T' € P such that (1) A(T) > ¢/2 and (2) ¢(wr) is minimal among
all 2-trees satisfying the first condition. Then let 7! be the maximal (with respect
to inclusion) tree in P with top Ir x wr.

Add T! to T, add T to T,, which will be a collection of 2-trees we will work
with in the sequel. And remove T from P. Then repeat the procedure above until
there is no tree in P with A(T) > &/2. Then we can take the remaining tiles to be
the collection P;.

The 2—trees in Ty have a disjointness property. Let 7,7’ € Ty and let P € T
and P' € T'. If wp is contained in wypr, then Ipr N IT = (. To see this, note that
¢(wr), which is contained in wp, is less than ¢(wyr) € wapr. Thus, T was selected
before T'. But if Ip: and I intersected, we would then have that P’ would be in
the tree T' which was removed from P before T’ was selected.

It remains to show that

62 Z |IT| < C

TET>

But, letting P be the union of the 2-trees T with T € T, the left hand side is at
most a constant times

Zpeﬁ (f, ¢1p)|* < HZPE? (f, ¢1pP) ¢1PH2

This follows by rewriting the first term, applying Cauchy—Schwartz and using the
fact that || f]] = 1.
Therefore, it is sufficient to prove

PeT

2
[ p e <005 il o

We estimate the left hand side of (7) by
> [f.61p) (b1, b1p) (b1, F)] ®)

P,P’ eﬁ:(JJP:UJPI

+2 > I(f; ¢1P) {b1pP, 1p7) (P1P', f)] - (9)

P,P'€P:wpCw;ps

Here we have used symmetry and the fact that (f,¢1p) = 0 unless one of the
intervals w; p and w; pr is contained in the other.
Observe that for |Ip:| < |Ip| we have

1
l{p1p, $1p)| < ClIp|3|Ipr| =2 |wplr, |

We estimate the smaller one of |{f, #1p)| and |(f, ¢1p')| by the larger one and use
symmetry to obtain for (8) the upper bound

c Z | (f,d1pP) ° Z |wplr, |

PcP P’Eﬁ:wp:wpl

1

1
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The interior sum we can estimate by |Ip|~!||wp||1 < C, because the intervals Ip:
with wpr = wp are pairwise disjoint. This proves the desired bound for (8).
The second summand (9) we estimate by

DoUfepdl D Uéup,dipr) (brp, £

PcP P'eP:wpCwypr
1
1 1
< Z (Z |(f;¢1p)|2> H(T)? < Ce > \Ir|2H(T)?
TeT, \PeT TeT,

where

H(T):= ) > b, bip) (e, )
PeT \ p'cP:wp Cwypr
It remains to show that H(T) < Ce|Ir| for each tree T € T5.

But,
2

H(T) < Ce Y |Ip| > el )
PeT P'€P:wpCw;pr

where we have used the upper energy estimate for each individual P’ (which is
a 2-tree by itself), and the estimate on (¢;p, ¢1p/). Fix P, then the intervals Ip:
with wp C wy, pr are pairwise disjoint and disjoint from I7 by the above disjointness
properties. Hence we have

> et ], <Cllwris

P'eP:wp Cwqpr

1

For each x € I there is at most one P € T of each scale with x € Ip. Hence we

have:
> el wels | <€ Y fwpls

1

PeT PeT
<cy H(1,T # Dyos gy w)lig | < Clnl
keN

This gives the appropriate bound for H(T) and thus finishes the proof of (7).

6. PROOF OF ESTIMATE (6)

Let J be the collection of all maximal dyadic intervals such that 3.J does not
contain any Ip with P € T. Then J is a partition of R.

We can estimate the left hand side of (6) as below, in which the terms ep are
phase factors of modulus 1 which make up for the absolute value signs in (6).

HZPGT ep{f,01p) P1P1lE,p| <

1

ZJEJ ZPET:UP\SU\ ||<fa ¢1P) ¢1P1E2P||L1(_]) (]_O)

(11)

i ZJEJ HZPET:|IP>J €p <f7 ¢1P> d)lPlEzp

L(J)
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To estimate (10), we calculate for each J € J and P € T

I(f, ¢1P) d1P1Esp L1 sy < Cepllp|||lwpllpe

Here, we have used the notation &€ = energy(T') and p = mass(T'). Fix an integer k
with 2% < |J| and consider P € T with |Ip| = 2¥. These intervals are disjoint and
contained in Iy, hence

Y ellwpllpey <C Y |Ip|(dist(Ze, ) Ip| 7)™

PET:|Ip|=2* PET:|Ip|=2k
If J C 311, we estimate this sum as
ClIp|(2"/|J))* < C2*
It J ¢ 3Ir, then dist(J, IT) > ¢|J|, so that the sum is no more than
ClIz|(2* /7)) (dist(IT, J)/|Ir))~*

These estimates, summed over 2¥ < |J| and J € J, yield no more than C|Ir|,
completing the estimate of (10).

We consider (11). We can assume that the summation runs only over those
J € J for which there exists a P € T with |J| < |Ip|. Then we have J C 3I1 and
|J| < |Ir| for all J occuring in the sum.

Let us fix an interval J € J and observe that

Gy=Jn U Es>p
PeT:|Ip|>|J]|

has measure at most C'u|J|. Indeed, let J' be the dyadic interval which contains
J and |J'| = 2|J| < |Ir|. By maximality of J, 3J' contains an interval Ip for
some P € T. Let P’ be the tile with |Ip:| = |J'| and P < P' < It x wr. Then
Gy C J'N Epr. And since mass({P}) < u, our claim follows.

Let T be the 2-tree of all P € T such that way C wep, and let Ty = T\ To.
Define, for j =1, 2,

Fj; = Z ep(f,¢1p) d1PlE,p

PeT;:|Ip|>|J|

For P in the 1-tree 11, the intervals wsp are disjoint. So the sets Fyp are disjoint.

Hence
1F1s Ly < CeplGyl| < CeplJ|
This estimate is summed over the disjoint J C 3Ir.

To complete the estimate of (11), we estimate Fby(x). Fix z and assume that
Fyy(x) is not zero. Since the intervals wop with P € T are all nested, there is
a largest (smallest) interval wy (w_) of the form wp with P € Ty, x € E,, and
|Ip| > J. Then = € Esp for some P € T with |Ip| > |J| iff |w_| < |wp| < |wi]-

Hence we can write Fy;(x) as

> ep(f, ¢1p) d1p(2)

PeTy:|w- [<|wp|<|wy]

=3 e (fi010) (#16 % (Moor Db, 16 = Mooy Dy 16) ) (@)

PeTs
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The last equality is easily seen from the geometry of the supports of the functions
¢1p. Therefore we can estimate |Fay(x)| by

Csupi Z ep (f, d1p) d1p(2)| dz

JCI |I| I'\per,

which is constant on J.
But Fy;1; is supported on the set G; of measure < Cu|J|, hence

1
c > uIJlilgm/I Y er(figip) dip(2)| dz

JeJ:JC3Iyp PeT;

<Cu HM (ZPET2 ep (f,d1p) ¢1P) HL1(3IT)
ZPETg €p <f7 ¢1P> ¢1p“2 .

Here M denotes the Hardy Littlewood maximal function and we have used the
maximal theorem. By direct calculation the L? norm in the last expression is
bounded by

< CplIr|?

¢ (ZP% (£, ¢1p)|2) ? < O|Ir|te

This completes the desired estimate for the second summand in (11) and thereby
finishes the proof of (6).
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