An Existence and Uniqueness Theorem for Roulettes

Ryan Hynd and John McCuan
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160

Abstract

For a pair of plane curves β and γ, we give a sufficient and necessary condition for the existence of a unique plane curve α that rolls on β, while a reference point P traces γ. This study was motivated by rolling curve solutions to a few classical problems of the calculus of variations.

1. Introduction

A roulette γ is traced out by a reference point P of a plane curve α, that rolls without slipping on a second co-planar curve β. We will only consider rolling while the unit tangent vectors of α and β agree at a unique point of contact.

2. An Equation for γ

Let $\alpha: U \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2} ; t \mapsto\left(\alpha_{1}(t), \alpha_{2}(t)\right), \beta: V \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2} ; u \mapsto\left(\beta_{1}(u), \beta_{2}(u)\right), r=P-\alpha$, $P=(a, b)$, and $\varphi=\cos ^{-1}\left(r \cdot \alpha^{\prime} /\left|r \| \alpha^{\prime}\right|\right)$. We will assume that α and β are differentiable and non-singular $\left(\alpha^{\prime}(t), \beta^{\prime}(u) \neq 0\right)$ on U and V, respectively. The normals to α and β are given by $\pi / 2$, counterclockwise rotations of each curves unit tangent.

Now, imagine placing α on β so that $\alpha\left(t_{0}\right)$ is in contact with $\beta\left(u_{0}\right)$ and both curves are tangent at the point of contact. Then envision rolling α on β for a length of arc s. If ϑ is the angle between $r(t)$ and $e_{1}=(1,0)$, and if $\left(\beta_{1}\left(u_{c}\right), \beta_{2}\left(u_{c}\right)\right)$ is the new point of contact between α and β, the coordinates for P are

$$
\begin{equation*}
\gamma(t)=\left(\beta_{1}\left(u_{c}\right)+|r(t)| \cos (\vartheta), \beta_{2}\left(u_{c}\right)+|r(t)| \sin (\vartheta)\right) . \tag{1}
\end{equation*}
$$

The new point of contact can be obtained by solving

$$
\begin{equation*}
s=\int_{t_{o}}^{t}\left|\alpha^{\prime}(\tau)\right| d \tau=\int_{u_{o}}^{u_{c}}\left|\beta^{\prime}(\zeta)\right| d \zeta \tag{2}
\end{equation*}
$$

for u_{c}. Observe that $u_{c}: U \rightarrow V$ is a monotone function of t with derivative $u_{c}^{\prime}(t)=$ $\left|\alpha^{\prime}(t)\right| /\left|\beta^{\prime}\left(u_{c}(t)\right)\right|$. We'll write $\beta_{c}=\beta \circ u_{c}$.

It is not difficult to see that $\vartheta=\varphi+\xi$, where $\left(\beta^{\prime}\left(u_{c}(t)\right) \cdot e_{1}, \beta^{\prime}\left(u_{c}(t)\right) \cdot e_{2}\right) /\left|\beta^{\prime}\left(u_{c}(t)\right)\right|=$ $(\cos (\xi), \sin (\xi))$. Hence,

Figure 1: Rolling α on β; the path that P traces is γ.

Figure 2: $\vartheta=\varphi+\xi$
$\gamma(t)=\beta_{c}(t)+\binom{|r(t)| \cos (\varphi+\xi)}{|r(t)| \sin (\varphi+\xi)}=\beta_{c}(t)+\left(\begin{array}{cc}\cos (\xi) & -\sin (\xi) \\ \sin (\xi) & \cos (\xi)\end{array}\right)\binom{|r(t)| \cos (\varphi)}{|r(t)| \sin (\varphi)}$.

Using the definition of φ, we have

$$
\binom{|r(t)| \cos (\varphi)}{|r(t)| \sin (\varphi)}=\left(\begin{array}{cc}
\cos (\phi) & \sin (\phi) \\
-\sin (\phi) & \cos (\phi)
\end{array}\right)\binom{a-\alpha_{1}(t)}{b-\alpha_{2}(t)}
$$

with $\left(\alpha^{\prime}(t) \cdot e_{1}, \alpha^{\prime}(t) \cdot e_{2}\right) /\left|\alpha^{\prime}(t)\right|=(\cos (\phi), \sin (\phi))$. By defining

$$
Q=\left(\begin{array}{cc}
\cos (\xi) & -\sin (\xi) \\
\sin (\xi) & \cos (\xi)
\end{array}\right)\left(\begin{array}{cc}
\cos (\phi) & \sin (\phi) \\
-\sin (\phi) & \cos (\phi)
\end{array}\right)=\left(\begin{array}{cc}
\cos (\xi-\phi) & -\sin (\xi-\phi) \\
\sin (\xi-\phi) & \cos (\xi-\phi)
\end{array}\right)
$$

(3) becomes

$$
\begin{equation*}
\gamma=Q(P-\alpha)+\beta_{c} \tag{4}
\end{equation*}
$$

This leads us to our first theorem.
Theorem 2.1 Let P, α and β be defined as above, and suppose γ is traced out by P as α rolls on β. Then the coordinates of γ are given by a translation by β_{c} of the radial vector $r=P-\alpha$ that has been rotated by the difference of inclination angles of α and β_{c}.

Example 1

We'll show that if $P=(a, b)$ is a point inside the circumference of a circle α of radius R, then P traces out an ellipse, as α rolls in another circle β of radius $2 R$. This result is due to Besant [1].

Let

$$
\alpha(s)=R(\cos (s / R), \sin (s / R)), \quad s \in[0,2 \pi R)
$$

and

$$
\beta(u)=2 R(\cos (u / 2 R), \sin (u / 2 R)), \quad u \in[0,4 \pi R) .
$$

$s=\int_{0}^{u_{c}}\left|\beta^{\prime}(\zeta)\right| d \zeta=u_{c} ; \alpha^{\prime}(s) /\left|\alpha^{\prime}(s)\right|=(\cos (s / R+\pi / 2), \sin (s / R+\pi / 2))$ and $\beta^{\prime}\left(s_{c}\right) /\left|\beta^{\prime}\left(s_{c}\right)\right|=$ $(\cos (s / 2 R+\pi / 2), \sin (s / 2 R+\pi / 2)$, so $\xi-\phi=-s / 2 R$. It follows that

$$
\begin{equation*}
\gamma(s)=Q(P-\alpha(s))+\beta_{c}(s)=\binom{(a+R) \cos (s / 2 R)+b \sin (s / 2 R)}{b \cos (s / 2 R)+(-a+R) \sin (s / 2 R)} . \tag{5}
\end{equation*}
$$

Without loss of generality we can suppose that $a, b>0$. Doing so, and substituting

$$
(\cos \tau(s), \sin \tau(s))=\left(\frac{|\gamma(s)|}{\tilde{a}} \cos (\eta(s)-\theta), \frac{|\gamma(s)|}{\tilde{b}} \sin (\eta(s)-\theta)\right)
$$

in

$$
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\binom{\tilde{a} \cos \tau(s)}{\tilde{b} \sin \tau(s)}
$$

gives (5), where $\eta(s)$ satisfies $\gamma(s)=|\gamma(s)|(\cos \eta(s), \sin \eta(s))$, $\theta=\tan ^{-1}\left(\sqrt{\frac{|P|-a}{|P|+a}}\right), \tilde{a}=$ $R+|P|$ and $\tilde{b}=R-|P| \cdot \tau^{\prime}(s)=\left(R^{2}-|P|^{2}\right) / 2 R|\gamma(s)|^{2}>0$, so τ is monotone on $[0,4 \pi R)$. Consequently, the trace of γ is an ellipse centered at the origin.

Figure 3: A circle of radius R rolling in a circle of radius $2 R$ with $|P|<R$.

Example 2

In this example, we'll roll a logarithmic spiral on a straight line and see what curve the origin $(P=(0,0))$ traces out. Let

$$
\begin{gathered}
\alpha(\theta)=e^{\theta}(\cos (\theta), \sin (\theta)), \quad \beta(t)=(0, t) \quad \theta, t \in \mathbb{R} \\
s=\int_{-\infty}^{\theta_{c}}\left|\alpha^{\prime}(\phi)\right| d \phi=\sqrt{2} e^{\theta_{c}} ; \alpha^{\prime}(\theta) /\left|\alpha^{\prime}(\theta)\right|=(\cos (\theta+\pi / 4), \sin (\theta+\pi / 4)) \text { and } \beta^{\prime}\left(\theta_{c}\right) /\left|\beta^{\prime}\left(\theta_{c}\right)\right|=
\end{gathered}
$$ $(1,0)$, so $\phi=\theta+\pi / 4$ and $\xi=0$. A straightforward calculation shows

$$
\gamma(\theta)=Q(P-\alpha(\theta))+\beta_{c}(\theta)=\frac{e^{\theta}}{\sqrt{2}}(1,1)
$$

That is, γ is linear. Therefore, we have just shown that the origin traces out the line $y=x$ as the logarithmic spiral rolls on $y=0$.

Figure 4: A logarithmic rolls on $y=0$, as the origin traces $y=x$.

3. The Inverse Problem

In this section, we'll consider the possibility of recovering α and P, for a given pair β and γ. The following lemma states a fundamental property of roulettes.

Lemma 3.1 Let α and β be differentiable, non-singular plane curves. Suppose that α, with reference point P, rolls on β to trace γ. Then the radial vector from the point of contact β_{c} to the roulette γ is always in the direction normal to the roulette.

PROOF: It suffices to show that $\gamma^{\prime}(t) \cdot\left(\gamma(t)-\beta_{c}(t)\right)=0$.

$$
\gamma^{\prime}(t)=Q^{\prime}(P-\alpha(t))-Q \alpha^{\prime}(t)+\beta_{c}^{\prime}(t)
$$

By equation (4), $\gamma(t)-\beta_{c}(t)=Q(P-\alpha(t))$, and since the dot product is invariant under rotations

$$
-Q(P-\alpha(t)) \cdot Q \alpha^{\prime}(t)=-(P-\alpha(t)) \cdot \alpha^{\prime}(t)=-|P-\alpha(t)|\left|\alpha^{\prime}(t)\right| \cos (\varphi)
$$

$$
Q^{\prime}=\left(\phi^{\prime}-\xi^{\prime}\right)\left(\begin{array}{cc}
\cos (\xi-\phi-\pi / 2) & -\sin (\xi-\phi-\pi / 2) \\
\sin (\xi-\phi-\pi / 2) & \cos (\xi-\phi-\pi / 2)
\end{array}\right)
$$

so

$$
Q(P-\alpha(t)) \cdot Q^{\prime}(P-\alpha(t))=0
$$

The tangents to $\alpha(t)$ and $\beta_{c}(t)$ coincide at each point of contact; thus,

$$
\left(\gamma(t)-\beta_{c}(t)\right) \cdot \beta^{\prime}\left(u_{c}(t)\right)=|P-\alpha(t)|\left|\alpha^{\prime}(t)\right| \cos (\varphi),
$$

which completes the proof.
For any two differentiable, non-singular plane curves β and γ, the following theorem gives a sufficient and necessary condition for the existence of a plane curve α with reference point P such that α rolls on β, while P traces γ. Furthermore α is unique, up to a Euclidean motion (a shift and a rotation). This theorem extends the result in [2], which was restricted to the case where β is a line and γ is periodic with respect to β.

Theorem 3.2 Let $\gamma: U \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ and $\beta: V \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ be differentiable and nonsingular. There exists a differentiable, non-singular plane curve α, with reference point $P \in \mathbb{R}^{2}$, such that P traces out γ, as α rolls on β if, and only if, there is a bijection $\Lambda: \gamma(U) \rightarrow \beta(V) ; \gamma(t) \mapsto \beta(u)$, where u is the unique number in V that satisfies

$$
\begin{equation*}
(\gamma(t)-\beta(u)) \cdot \gamma^{\prime}(t)=0 \tag{6}
\end{equation*}
$$

α is unique up to a Euclidean motion.
PROOF: (Existence) \Rightarrow Suppose there exists a plane curve α, with reference point P that traces out γ, as α rolls on β. Lemma 3.1 asserts that $\gamma(t)-\beta_{c}(t)$ is always along the direction normal to $\gamma^{\prime}(t)$, so there is a unique solution in V to (6) for all $t \in U$. We take $\Lambda(\gamma(t))=\beta_{c}(t)=\left(\beta \circ u_{c}\right)(t) . \Lambda$ is a composition of monotone functions and so is bijective.
\Leftarrow Conversely, suppose that there is a bijection Λ as described in the statement. We define $\tilde{u}: U \rightarrow V$ as the solution to (6). The monotonicity of \tilde{u} follows from the monotonicity of of Λ. We'll write $\tilde{\beta}=\beta \circ \tilde{u}$.

Let

$$
\begin{equation*}
\alpha(t)=\rho(t)(\cos \theta(t), \sin \theta(t)), \quad t \in U \tag{7}
\end{equation*}
$$

where $\rho(t)=|\gamma(t)-\tilde{\beta}(t)|$ and

$$
\theta(t)=\theta\left(t_{0}\right)+\int_{t_{0}}^{t} \frac{\sin (-\psi(\tau))}{\rho(\tau)}\left|\tilde{\beta}^{\prime}(\tau)\right| d \tau ;
$$

$(\cos \psi(t), \sin \psi(t))=\left((\tilde{\beta}(t)-\gamma(t)) \cdot \beta^{\prime}(\tilde{u}(t)),(\tilde{\beta}(t)-\gamma(t)) \cdot \mathcal{J} \beta^{\prime}(\tilde{u}(t))\right) / \rho\left|\beta^{\prime}(\tilde{u}(t))\right|$ with $\mathcal{J}(x, y)=(-y, x)$.
$\left|\alpha^{\prime}(t)\right|=\sqrt{\rho^{\prime}(t)^{2}+\left(\rho \theta^{\prime}(t)\right)^{2}}=\left|\tilde{\beta}^{\prime}(t)\right|=\left|\beta^{\prime}(\tilde{u}(t))\right|\left|\tilde{u}^{\prime}(t)\right| \neq 0$, so α is differentiable and non-singular. If $\tilde{u}^{\prime}(t)=|\alpha(t)| /|\beta(\tilde{u}(t))|$, then $\tilde{u}=u_{c}$. If $\tilde{u}^{\prime}(t)=-|\alpha(t)| /|\beta(\tilde{u}(t))|$ we simply reparameterize $\beta(V)$ so that it's traced out in the opposite direction to get $\tilde{u}=u_{c}$. Now we'll use equation (4) to determine the roulette obtained from rolling α on β.

Letting $\left(\alpha^{\prime}(t) \cdot e_{1}, \alpha^{\prime}(t) \cdot e_{2}\right) /\left|\alpha^{\prime}(t)\right|=(\cos (\phi), \sin (\phi))$ and $\left(\beta^{\prime}(\tilde{u}(t)) \cdot e_{1}, \beta^{\prime}(\tilde{u}(t)) \cdot e_{2}\right) /\left|\beta^{\prime}(\tilde{u}(t))\right|=(\cos (\xi), \sin (\xi))$, we have
$\cos (\theta(t)-\phi+\xi)=\frac{(\tilde{\beta}(t)-\gamma(t)) \cdot e_{1}}{\rho} \quad$ and $\quad \sin (\theta(t)-\phi+\xi)=\frac{(\tilde{\beta}(t)-\gamma(t)) \cdot e_{2}}{\rho}$.
Hence,

$$
\left(\begin{array}{cc}
\cos (\xi-\phi) & -\sin (\xi-\phi) \\
\sin (\xi-\phi) & \cos (\xi-\phi)
\end{array}\right)\binom{0-\rho(t) \cos \theta(t)}{0-\rho(t) \sin \theta(t)}+\tilde{\beta}(t)=\gamma(t)
$$

and, thus, α rolls on $\tilde{\beta}$, while $P=(0,0)$ traces γ.
(Uniqueness) Let α be defined as in (7), and suppose there exists another curve χ that rolls on β while the origin traces γ. We parameterize χ as follows

$$
\chi(t)=\eta(t)(\cos \vartheta(t), \sin \vartheta(t)), \quad t \in U
$$

The existence of χ requires that there is a unique line segment between $\gamma(t)$ and $\beta(u)$ along the direction normal to $\gamma^{\prime}(t)$ for each $\gamma(t) \in \gamma(U)$ with corresponding $\beta(u) \in \beta(V)$. Therefore, $\eta(t)=|\gamma(t)-\beta(u)|$. By defining ϱ and ζ implicitly as $\left((\beta(u)-\gamma(t)) \cdot e_{1}\right.$, $\left.(\beta(u)-\gamma(t)) \cdot e_{2}\right)=\rho(\cos (\varrho), \sin (\varrho))$ and $\left(\chi^{\prime}(t) \cdot e_{1}, \chi^{\prime}(t) \cdot e_{2}\right) /\left|\chi^{\prime}(t)\right|=(\cos (\zeta), \sin (\zeta))$, from (8) we have

$$
\varrho=\theta(t)-\phi+\xi+j \pi=\vartheta(t)-\zeta+\xi+k \pi,
$$

for some $j, k \in 2 \mathbb{Z}$. Since,

$$
\begin{aligned}
& \tan (\theta(t)-\phi+j \pi)=\tan (\theta(t)-\phi)=-\frac{\rho(t) \theta^{\prime}(t)}{\rho^{\prime}(t)} \\
& \tan (\vartheta(t)-\zeta+k \pi)=\tan (\vartheta(t)-\zeta)=-\frac{\eta(t) \vartheta^{\prime}(t)}{\eta^{\prime}(t)}
\end{aligned}
$$

and $\rho(t)=\eta(t), \theta^{\prime}(t)=\vartheta^{\prime}(t)$. Therefore, α and χ differ by a rotation. Furthermore, if we choose any $\tilde{P} \in \mathbb{R}^{2}$, and if we let $\alpha=\tilde{\alpha}-P, \tilde{P}$ traces γ, while $\tilde{\alpha}$ rolls on $\tilde{\beta}$. Thus, α is unique up to a Euclidean motion.

References

[1] W. H. Besant, Notes on Roulettes and Glissettes, Deighton, Bell, and Co. Cambridge, 1890.
[2] J. Bloom \& L. Whitt, The Geometry of Rolling Curves, American Mathematical Monthly, Vol. 88 \#6 (1981) 420-426.

